- Sheldrick, G. M. (1976). Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Strouse, C. E. (1976). Rev. Sci. Instrum. 47, 871-876.
- Trueblood, K. N., Knobler, C. B., Maverick, E. F., Helgeson, R. C., Brown, S. B. & Cram, D. J. (1981). J. Am. Chem. Soc. 103, 5594– 5596.
- Trueblood, K. N., Maverick, E. F. & Knobler, C. B. (1991). Acta Cryst. B47, 389-398.
- UCLA Crystallographic Package (1984). J. D. McCullough Laboratory of X-ray Crystallography, Univ. of California, Los Angeles, USA.

Acta Cryst. (1995). C51, 904-908

Syn and Anti Isomers of [2.2]Paracyclonaphthane

Albert V. Fratini, Michael L. Chabinyc and Timothy J. Perko

Department of Chemistry, University of Dayton, 300 College Park, Dayton, OH 45469-2357, USA

WADE W. ADAMS

Materials Directorate, Wright Laboratory, Wright Patterson Air Force Base, OH 45433-7702, USA

Abstract

The structures of the anti (1) and syn (2) isomers of [2.2]paracyclonaphthane, C₂₄H₂₀, can be understood in terms of molecules composed of four segments, two naphthalene rings and two ethylene groups bridging the naphthalene rings. Distortions from ideal geometries are described and attributed primarily to intramolecular effects. Several observations have been made: the bridged portion of the naphthalene ring is deformed into a boat shape in both (1) and (2); much of the $\pi - \pi$ repulsion is taken up by bending angles α and β ; the naphthalene rings are parallel to each other in (1), but are nonparallel in (2); one naphthalene ring in (2) is twisted relative to the other, indicating a mode of strain reduction which is unique to this molecule, and the C-C distances and valency angles in the ethylene bridges are larger than normal values.

Comment

The structural features of the paracyclophanes, a class of molecules which can accommodate strain through intramolecular distortions, have been summarized by Mak (1992) and Keehn (1983). In the area of new synthetic procedures, Loy & Assink (1992) recently reported the use of paracyclophanes in copolymerization reactions with C_{60} . This work, which involves the X-

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved ray structure determination of the *anti* (1) and *syn* (2) isomers of [2.2]paracyclonaphthane, extends the study of the effects of transannular $\pi - \pi$ interactions on molecular conformations to bridged naphthalenoid systems.

[2.2] Paracyclonaphthane

In the *anti* isomer, (1), the packing is determined by $C \cdots H$ and $H \cdots H$ interactions [2.87 (2) and 2.26 (3) Å, respectively]. The shortest $C \cdots C$ distance is 3.693 (3) Å. Since the intermolecular distances fall within the normal van der Waals range, distortions in the molecular geometry are attributed primarily to intramolecular interactions.

The asymmetric unit comprises two half molecules, designated A and B, each of which sits on a center of inversion. The averaging of bond distances in the molecule (Fig. 1) was carried out by superimposing the two halves, reasoning that one half was identical to the other. The average aromatic bond distance is 1.396 Å, which is equivalent to that found in benzene, 1.397 Å. The length of the bridging bond is 1.574 (3) Å in molecule A and 1.568 (4) Å in molecule B. This lengthening of the ethylene bridge is consistent with observations found in other [2.2]paracyclophanes (Mak, 1992).

A striking structural feature is the deformation of the bridged ring of the naphthalenoid system into a boat shape. C1A and C4A are 0.156(2) and 0.158(2) Å,

Fig. 1. ORTEPII (Johnson, 1976) view of (1) with displacement ellipsoids at the 50% probability level. H atoms are numbered according to the attached C atom, except where indicated. A unitcell diagram has been deposited with the supplementary material.

respectively, below the plane of C2A, C3A, C9A, and C10A. The dihedral angles, α , between the latter plane and those of atoms C2A, C1A, C9A and C3A, C4A, C10A are 12.6 (7) and $12.5 (7)^{\circ}$, respectively. C1B and C4B exhibit similar displacements from the plane of C2B, C3B, C9B, C10B of 0.164(2) and 0.161 (2) Å, respectively. The dihedral angles between the plane C2B, C3B, C9B, C10B and planes C2B, C1B, C9B and C3B, C4B, C10B are 13.1 (6) and 12.8 (6) $^{\circ}$, respectively. The average value of α is 12.8°. The exocyclic bonds, C1A-C12A and C4A-C11A, are bent below the planes at each end by β angles of 11.5 and 11.0°, respectively. The corresponding β angles in molecule B are 11.8 and 10.0°. Table 5 summarizes the average values for selected geometrical parameters. In the paracyclophanes, the decrease of the internal angle, λ , at the substituted atoms C1 and C4 below 120° is characteristic of substitution at these atoms. The decrease is also associated, at least in part, with the boat conformation of the bridged ring. The puckered geometry can be viewed in terms of a folding angle about the line connecting atoms C1 and C4. This folding angle, defined as the dihedral angle between the two planes C1, C2, C3, C4 and C1, C9, C10, C4, is 15.0 (3)°. The corresponding angle in molecule B is $15.6 (3)^{\circ}$. The internal valency angles, γ , associated with the bridging C atoms are some $3-5^{\circ}$ larger than the normal value of 109°. The torsion angles associated with the ethylene bridge, C1—C12—C11'—C4', are $15.8 (3)^{\circ}$ in molecule A and $17.4(3)^{\circ}$ in B.

The intramolecular distances between overlapping atoms that lie on the lines essentially normal to the ring planes are 2.756 (3), 3.064 (3) and 3.061 (3) Å for the $C1A \cdots C4A'$, $C2A \cdots C10A'$ and $C3A \cdots C9A'$ distances, respectively. The primed symbols designate symmetrygenerated atoms. Similar distances [2.756 (3), 3.061 (3) and 3.084 (3) Å] are observed for molecule *B*. These short distances together with the deformation of the bridged rings are indicative of inherent strain in the structure of (1).

The syn isomer, (2), has a shortest $C \cdots C$ distance of 3.528 (4) Å; the shortest $C \cdots H$ and $H \cdots H$ distances are 2.66 (3) and 2.50 (3) Å, respectively. As discussed for (1), intramolecular interactions are considered to be the primary source of molecular distortions.

The asymmetric unit comprises one complete molecule (Fig. 2). The average aromatic distance is 1.392 Å, which is in agreement with a typical aromatic bond length. The elongation of the ethylene bridge distances is indicative of strain in the molecule. The bridging-bond distances for C11—C12 and C23—C24 are 1.563 (5) and 1.575 (5) Å, respectively. The bridged aromatic ring is distorted into a boat shape (Fig. 3). The folding dihedral angle between planes C1, C2, C3, C4 and C1, C9, C10, C4 is 16.4 (4)°, and 16.6 (4)° between planes C13, C14, C15, C16 and C13, C21, C22, C16. Atoms C1 and C4 are 0.178 and 0.165 Å, respectively, below the plane of atoms C2, C3, C9, C10. Similarly, C13 and C16 deviate from the plane of C14, C15, C21, C22 by 0.183 and 0.160 Å, respectively. The angles, α , between the plane of atoms C2, C3, C9, C10 and those of atoms C2, C1, C9 and C3, C4, C10 are 14.3 (6) and 13.2 (7)°, respectively. For the other naphthalenoid ring, the dihedral angles between the plane C14, C15, C21, C22 and planes C13, C14, C21 and C15, C16, C22 are 14.5 (6) and 12.8 (6)°, respectively. The exocyclic bonds C1—C11, C4—C24, C12—C13 and C16—C23 are bent additionally out of the planes at each end by β angles of 9.8, 9.9, 10.0 and 10.1°, respectively. Average values of these geometrical parameters are shown in Table 5.

Since the lengths of the bridging bonds are equivalent to those seen in (1), the increased π -orbital overlap of (2) is not relieved by a bond-stretching mechanism. The unfavored face-to-face contact of naphthalene rings is alleviated by two alternate mechanisms. First, the rings are rotated relative to each other about an axis perpendicular to and passing through the center

Fig. 2. ORTEPII (Johnson, 1976) view of (2) with displacement ellipsoids at the 50% probability level. H atoms are numbered according to the attached C atom, except where indicated. A unit-cell diagram has been deposited with the supplementary material.

Fig. 3. Side view of (2) showing average inter-ring separations.

of the bridged ring. The extent of rotation can be approximated by the torsion angles C1--C11--C12--C13 $[11.1 (4)^{\circ}]$ and C16—C23—C24—C4 $[12.5 (4)^{\circ}]$. The twisting of rings is not observed in (1) and establishes another mode of strain reduction in (2). Second, the non-parallel disposition of naphthalene rings causes the inter-ring separation to increase with distance from the bridged C atoms (Fig. 3). The non-bonded distances between overlapping atoms on opposite rings range from 3.053(5) Å (C3···C15) and 3.066(4) Å (C2···C14), nearest to the bridge, to 3.936(5) Å (C7...C19) and 3.857 (4) Å (C6···C18) on the outer rings. As expected, the C9...C21 [3.186(3) Å] and C10...C22 [3.156 (3) Å] distances exhibit intermediate ble 5 shows a comparison of selected non-b tances for (1), (2) and [2.2] paracyclophane.

An examination of Table 5 reveals that age geometric parameters found in the pre compare favorably with those reported paracyclophane (Hope, Bernstein & Trueblo The exception is the higher α value in (2). greater deformation of the bridged ring in (2 as the primary strain-relieving mechanism ar cation of additional strain associated with o napthalene rings.

Experimental

Isomer (1) Crystal data C24H20 $M_r = 308.43$ Monoclinic $P2_{1}/c$ a = 14.589(3) Å b = 13.384(3) Å c = 8.158(3) Å $\beta = 91.65(3)^{\circ}$ $V = 1592(1) \text{ Å}^3$ Z = 4 $D_x = 1.29 \text{ Mg m}^{-3}$ Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: numerical $T_{\min} = 0.9793, T_{\max} =$ 0.9916 4924 measured reflections 4623 independent reflections

Refinement

Refinement on F $\Delta \rho_{\rm max} = 0.180 \ {\rm e}$ R = 0.047 $\Delta \rho_{\rm min} = -0.085 \ {\rm e} \ {\rm \AA}$

wR = 0.058	Extinction correction:
S = 1.347	isotropic (Zachariasen,
2009 reflections	1963)
298 parameters	Extinction coefficient:
H atoms refined isotropically	0.30×10^{-6}
$w = 4F_o^2/[\sigma^2(F_o^2)]$	Atomic scattering factors
$+ 0.0016F_{o}^{4}$]	from International Tables
$(\Delta/\sigma)_{\rm max} = 0.008$	for X-ray Crystallography
. , , ,	(1974 Vol IV)

Table	1. Fractic	onal aton	nic coord	dinates a	ınd e	quivalent
is	otropic di	splaceme	ent paran	neters (Å	2) for	r (1)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j$$

bit intermediate values. Ta-		*		-	11
f selected non-bonded dis-	C1A	-0.0068(2)	0.0014	$(2) \qquad 0.2423(3)$	0.0389 (6)
areaualarhana	C2A	0.0839 (2)	0.0166	(2) 0.2423(3) (2) 0.2159(3)	0.0429(7)
baracyclophane.	C3A	0.1126 (1)	0.0835	(2) 0.0948 (3)	0.0436 (7)
e 5 reveals that the aver-	C4A	0.0514(1)	0.1359	(2) -0.0010 (3)	0.0381 (6)
ound in the present work	C5A	-0.1077 (2)	0.2037	(2) -0.0227 (3)	0.0455 (7)
hose reported for [2,2]-	C6A	-0.1970 (2)	0.2030	(2) 0.0231 (3)	0.0538 (8)
stein & Trueblood 1072	C7A	-0.2254 (2)	0.1359	$\begin{array}{ccc} (2) & 0.1420 (3) \\ (2) & 0.1420 (3) \end{array}$	0.0544 (8)
(2) The flue blood, 1972).	COA	-0.1645(2)	0.0714	$\begin{array}{ccc} (2) & 0.2132 (3) \\ (2) & 0.1721 (2) \end{array}$	0.0467 (7)
α value in (2). Thus, the	C104	-0.0419(1)	0.1305	(2) 0.1731(2) (2) 0.0507(3)	0.0370(0)
oridged ring in (2) is taken	CllA	0.0761 (2)	0.1690	(2) = 0.0307(3) (2) = -0.1704(3)	0.0492 (8)
ng mechanism and an indi-	C12A	-0.0372 (2)	-0.0977	(2) 0.3091 (3)	0.0492 (7)
ssociated with overlapping	C1 <i>B</i>	0.4907 (2)	0.5119	(2) 0.2421 (3)	0.0423 (7)
sociated with overlapping	C2B	0.5009 (2)	0.6084	(2) 0.1940 (3)	0.0469 (7)
	C3B	0.4523 (2)	0.6464	(2) 0.0564 (3)	0.0463 (7)
	C4B	0.3939(1)	0.5879	$\begin{array}{ccc} (2) & -0.0363 & (3) \\ (2) & 0.0376 & (2) \end{array}$	0.0403 (6)
	CSD C6R	0.2958(2) 0.2715(2)	0.4305	(2) -0.0376(3)	0.0511 (8)
	C7B	0.2713(2) 0.3176(2)	0.3108	(2) 0.0267(4) (2) 0.1655(4)	0.0627 (9)
	C8B	0.3876 (2)	0.3639	(2) 0.2378 (3)	0.0547 (8)
	C9B	0.4144 (1)	0.4578	(2) 0.1752 (2)	0.0373 (6)
	C10B	0.3662 (1)	0.4955	(2) 0.0343 (3)	0.0370 (6)
Mo $K\alpha$ radiation	C11 <i>B</i>	0.3759 (2)	0.6112	(2) -0.2153 (3)	0.0577 (8)
$\lambda = 0.71073 \text{ Å}$	C12B	0.5696 (2)	0.4591	(2) 0.3316 (3)	0.0588 (9)
Cell parameters from 25					
reflections	Tahl	e 2. Selecte	d oenmetri	c narameters (Å	$^{\circ}$) for (1)
$\theta = 0.18^{\circ}$				e parameters (11,)]0/(1)
$u = 0.067 \text{ mm}^{-1}$	CIA - C	2A	1.363 (3)	C1 <i>B</i> —C2 <i>B</i>	1.359 (3)
$\mu = 0.007 \text{ mm}$	C1A = C	9A 124	1.427 (3)	C1B - C9B	1.424 (3)
I = 294 K	C_{2A}	34	1.303(3) 1.407(3)	C1B - C12B C2B - C3B	1.519(3)
Parallelepiped	C3A—C	4A	1.364 (3)	C3B-C4B	1.369 (3)
$0.60 \times 0.30 \times 0.10 \text{ mm}$	C4A—C	10A	1.437 (3)	C4B-C10B	1.427 (3)
Transparent	C4A—C	11A	1.505 (3)	C4B—C11B	1.509 (3)
Crystal source: Professor	C5A—C	6A	1.365 (4)	C5B—C6B	1.355 (4)
Harry Wasserman of Yale	C5A—C	10A	1.409 (3)	C5B—C10B	1.410 (3)
University	C0A-C	/A •	1.394 (4)	C6B - C7B	1.389 (4)
		5A 3A	1.358 (3)	C/B = C8B	1.364 (4)
	C9A-C	10A	1.415 (3)	C0BC9B	1.410 (3)
2000 1 1 2 1	C11A-C	C12A ⁱ	1.574 (3)	$C11B - C12B^{ii}$	1.568 (4)
2009 observed reflections	C24_C	14-094	1178(2)	COR CIR COR	117.6 (2)
$[I > 3.0\sigma(I)]$	C2A - C	A = C I 2 A	1191(2)	$C_{2B} = C_{1B} = C_{9B}$ $C_{2B} = C_{1B} = C_{12B}$	117.0(2)
$R_{\rm int} = 0.041$	C9A-C	A = C12A	121.7(2)	C9B-C1B-C12B	121 4 (2)
$\theta_{\rm max} = 29.97^{\circ}$	CIA-C	2A—C3A	121.1 (2)	C1B-C2B-C3B	121.2 (2)
$h = -20 \rightarrow 20$	C2A—C	3A—C4A	121.7 (2)	C2B—C3B—C4B	121.7 (2)
$k = 0 \rightarrow 18$	C3A—C4	IA-C10A	117.4 (2)	C3B—C4B—C10B	116.9 (2)
$l = 0 \rightarrow 11$	C3A—C4	A-CIIA	120.4 (2)	C3B—C4B—C11B	120.3 (2)
3 standard reflections	C10A = C	C4A - C11A	120.9 (2)	C10B—C4B—C11B	121.7 (2)
fraguenous 120 min	C54_C	54 - C7A	121.5(2)	C5P C6P C7P	121.9 (2)
frequency. 120 min	C6A-C	7A-C8A	120.0(2) 120.2(2)	C6B - C7B - C8B	119.9 (2)
intensity decay: -1.80%	C7A-C8	3A—C9A	121.8 (2)	C7B - C8B - C9B	120.0 (2)
	CIA-C	A-C8A	122.2 (2)	C1B-C9B-C8B	122.2 (2)
	C1A—C9	9A—C10A	119.7 (2)	C1BC9BC10B	119.5 (2)
$\Delta a = 0.180 a {}^{3}a^{-3}$	C8A—C9	A-C10A	117.9 (2)	C8BC9BC10B	118.2 (2)
$\Delta p_{\text{max}} = 0.100 \text{ c A}$	C4A—C1	0A—C5A	122.3 (2)	C4B—C10B—C5B	121.9 (2)
$\Delta \rho_{\rm min} = -0.085 \ {\rm e \ A}$	C4A—C1	0A-C9A	119.0 (2)	C4B—C10B—C9B	119.7 (2)

FRATINI, CHABINYC, PERKO AND ADAMS

C5A—C10A—C9A C4A—C11A—C12A ¹	118.5 (2) 113.0 (2)	C5B—C10B—C9B C4B—C11B—C12B ⁱⁱ	118.3 (2) 112.6 (2)	C14 C15	0.2317 (4) 0.3621 (4)	0.1794 (0.2371 ((3) 0.7576 (3) 0.8091	5 (2)0.079 (2)(2)0.074 (2)
$C1A$ — $C12A$ — $C11A^{1}$	112.2 (2)	C1 <i>B</i> —C12 <i>B</i> —C11 <i>B</i> "	112.3 (2)	C16	0.4580 (3)	0.3101 (2) 0.7798	B (2) 0.0586 (9)
Symmetry coo	les: (i) –x, –	-y, -z; (ii) $1 - x, 1 - y,$	-z.	C17	0.4682(3)	0.4424 (2) 0.6652	2(2) 0.0592(9)
				C19	0.4047(4) 0.2710(4)	0.4820 ((3) 0.5862 (3) 0.5370	(2) 0.073(1)
Isomer (2)				C20	0.2045 (3)	0.3373 (2) 0.5645	5(2) $0.068(1)$
Crystal data				C21 C22	0.2625 (3)	0.2946 (2) 0.6447 2) 0.6978	7(1) 0.0486 (8) 8(1) 0.0464 (8)
C24H20		Mo $K\alpha$ radiation		C23	0.6339 (4)	0.3289 (3) 0.8267	7 (2) 0.085 (1)
$M_{-} = 308.43$		$\lambda = 0.71073$ Å		C24	0.7494 (4)	0.2260 (3) 0.8193	3 (2) 0.077 (1)
Monoclinic		Cell parameters from	m 25	ፕሬኬኒ	A Salarta			(Å 9) ((7)
P_{2}/n		reflections	III 25	Table	e 4. Selecied	a geometri	c parameter	s(A, -) for(2)
= 9271(2)		$A = 11 10^{\circ}$		C1—C2		1.361 (4)	C12—C13	1.507 (4)
a = 8.3/1(3) A		$v = 0.067 \text{ mm}^{-1}$		C1C9		1.432 (4)	C13-C14	1.366 (4)
b = 11.807 (4) A		$\mu = 0.007 \text{ mm}$		CI = CII		1.508 (4)	C13-C21	1.431 (4)
c = 16./04 (8) A		I = 294 K		$C_2 - C_3$		1 364 (4)	C14C15	1.399 (4)
$\beta = 103.49 (3)^{\circ}$		Rectangular block		C4C10		1.436 (4)	C16-C22	1.425 (3)
$V = 1605 (2) \text{ A}^3$		$0.50 \times 0.50 \times 0.40$) mm	C4—C24		1.512 (4)	C16-C23	1.514 (4)
Z = 4		Transparent		C5—C6		1.354 (4)	C17—C18	1.355 (4)
$D_x = 1.28 \text{ Mg m}^{-3}$		Crystal source: Prof	fessor	C5-C10		1.406 (4)	C17—C22	1.411 (4)
		Harry Wassermar	n of Yale	C_{0}		1.388 (4)	C18 - C19	1.380 (4)
		University		C7-C8		1.401 (4)	C19 = C20 C20 = C21	1.343 (4)
				C9-C10		1.426 (3)	C21—C22	1.421 (3)
Data collection				C11—C12	2	1.563 (5)	C23C24	1.575 (5)
Enraf-Nonius CAD	-4	1555 observed refle	ections	C2C1		117.6 (2)	C12—C13—C	21 120.8 (3)
diffractometer		$[l > 3.0\sigma(l)]$		C2-C1-	-C11	120.0 (3)	C14—C13—C	21 117.1 (2)
$\omega/2\theta$ scans		$R_{ini} = 0.029$		C9-C1-	-C11	121.4 (2)	C13C14C	15 121.0 (3)
Absorption correcti	on.	$A = -29.96^{\circ}$		C1—C2—	-C3	121.5 (3)	C14C15C	16 122.3 (3)
numerical	011.	$b = 11 \times 11$		$C_2 - C_3 - C_4$	-C4	121.1(3) 1176(2)		22 116.8 (2)
T = 0.0775 T	•	$h = -11 \rightarrow 11$ $h = 0 \rightarrow 16$		C3-C4-	-C74	1202(3)	C13-C10-C	23 117.8(2) 23 122.3(3)
$I_{\min} = 0.9773, I$	_{max} =	$k = 0 \rightarrow 10$		C10-C4-	C24	121.2 (2)	C18-C17-C	122.3(3) 22 121.7(2)
0.9932		$l = 0 \rightarrow 23$		C6C5	-C10	121.6 (2)	C17—C18—C	19 120.4 (3)
4981 measured refle	ections	3 standard reflection	ns	C5—C6—	-C7	120.2 (3)	C18—C19—C	20 120.1 (3)
4672 independent re	effections	frequency: 120 m	lin	C6—C7—	-C8	120.1 (3)	C18C19H	19 118 (1)
		intensity decay: ().22%	C1_C8	-09	121.6(2)	C10-C19-H	19 121 (1) 21 121 8 (2)
				C1-C9-	-C0 -C10	112.0(2)	C13-C21-C	20 122.9(2)
Refinement				C8C9	-C10	118.1 (2)	C13-C21-C	22 118.7 (2)
Refinement on F		$\Delta a = 0.117 e^{3}$	-3	C4C10-	C5	122.4 (2)	C20C21C	22 118.4 (2)
R = 0.042		$\Delta p_{\text{max}} = 0.117 \text{ C R}$	Å −3	C4C10-	C9	119.3 (2)	C16—C22—C	17 122.6 (2)
K = 0.042		$\Delta \rho_{\rm min} = -0.070 {\rm e}$	A.	C5-C10-	C9	118.3 (2)	C16-C22-C	21 120.1 (2)
WK = 0.050		Extinction correctio	n:		-C12	113.2(2)	C17 - C22 - C	21 117.4 (2) 24 112.8 (2)
5 = 1.431		isotropic (Zachar	iasen,	C12-C13	3	121.1 (3)	C10-C25-C C4-C24-C2	3 112.8 (2)
1555 reflections		1963)						
298 parameters		Extinction coefficie	nt:	Table 5	Selected	average in	tramolecula	r distances and
H atoms refined iso	tropically	0.53×10^{-6}				anoles	(Å. °)	
$w = 4F_o^2/[\sigma^2(F_o^2)]$	$w = 4F_o^2/[\sigma^2(F_o^2)]$ Atomic scattering factors							
$+ 0.0016F_o^4$]		from Internationa	al Tables		é	?/		
$(\Delta/\sigma)_{\rm max} = 0.017$		for X-ray Crystal	lography		a		-α.a	
•		(1974, Vol. IV)	-		, and a second sec		Y	•.

a b

е

р

q α β

 $_{\lambda}^{\gamma}$

Table 3. Fractional atomic coordinates and equivalentisotropic displacement parameters (Å²) for (2)

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j.$

	x	у	Ζ	U_{eq}
Cl	0.4133 (3)	0.0413 (2)	0.6354 (2)	0.0545 (9)
C2	0.4612 (3)	-0.0003(2)	0.7133 (2)	0.066(1)
C3	0.5879 (4)	0.0510 (3)	0.7724 (2)	0.069(1)
C4	0.6706 (3)	0.1427 (2)	0.7531 (2)	0.0598 (9)
C5	0.7562 (3)	0.2455 (2)	0.6398 (2)	0.063 (1)
C6	0.7366 (3)	0.2698 (2)	0.5589 (2)	0.072(1)
C7	0.6112 (4)	0.2192 (3)	0.5007 (2)	0.071(1)
C8	0.5058 (3)	0.1460 (2)	0.5250 (2)	0.0589 (9)
C9	0.5230 (3)	0.1171 (2)	0.6080(1)	0.0484 (8)
C10	0.6533 (3)	0.1681 (2)	0.6674 (2)	0.0513 (8)
C11	0.2387 (3)	0.0252 (2)	0.5870 (2)	0.070(1)
C12	0.1138 (4)	0.1047 (3)	0.6159 (2)	0.087(1)
C13	0.1944 (3)	0.1963 (2)	0.6744 (2)	0.062(1)

(1) 1.510(2) 1.571(3) [2.2]Paracyclophane* 1.514 1.569 (2) (2) 1.510(2) 1.569(4) 1.395(1) 1.396(1) 1.394 2.769(3) 3.115(2) 2.756(3) 2.78 3.068(2) 3.09 12.8(4) 13.7(3) 12.6 11.1 10.0 11.2 112.3(2) 117.4(1) 113.1(1) 117.3(1) 113.7 117.3 * Hope, Bernstein & Trueblood (1972).

q

ß

For both compounds, data collection: CAD-4 Software (Enraf-Nonius, 1988); cell refinement: CAD-4 Software; data reduction: Molen PROCESS (Fair, 1990); program(s) used to solve structures: direct methods in *SHELXS*86 (Sheldrick, 1985); program(s) used to refine structures: *MolEN LSFM*; molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *MolEN BTABLE PTABLE CIF*.

We thank the Research Corporation for financial support.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and unit-cell diagrams have been deposited with the IUCr (Reference: CR1130). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Enraf-Nonius (1988). CAD-4 Manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands. Hope, H., Bernstein, J. & Trueblood, K. N. (1972). Acta Cryst. B28,
- 1733–1743. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge
- National Laboratory, Tennessee, USA.
- Keehn, P. M. (1983). *Cyclophanes*, Vol. 1, edited by P. M. Keehn & S. M. Rosenfeld, pp. 69–238. New York: Academic Press.
- Loy, D. A. & Assink, R. A. (1992). J. Am. Chem. Soc. 114, 3977-3978.
- Mak, T. C. W. (1992). Crystallography in Modern Chemistry: a Resource Book of Crystal Structures, pp. 849–861. New York: Wiley.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.

Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1995). C51, 908–912

Triterpenoide. VII.† Über die Struktur von neuen 2-oxa- und 1,2-seco-Derivaten des Olenanolsäuremethylesters

ANDRZEJ GZELLA, URSZULA WRZECIONO* UND LUCJUSZ ZAPRUTKO

Lehrstuhl für Organische Chemie der Medizinischen, Karol-Marcinkowski-Akademie Poznań, ul. Grunwaldzka 6, 60-780 Poznań, Polen

(Eingegangen am 25. Mai 1994; angenommen am 22. August 1994)

Abstract

The X-ray crystal structure analysis of 3β -hydroxy-28-methoxy-11,28-dioxo-2-oxaolean-12-ene-3,1-carbolac-tone, (2), and dimethyl 1,3,11-trioxo-1,2-secoolean-12-

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved ene-2,28-dioate, (3), confirms the structure of (2) and (3) previously derived by spectroscopic methods. The hydroxyl group at C(3) in (2) and the side chain at C(5) in (3) are in equatorial positions. In (3), the C(1)=O(4) carbonyl group is antiperiplanar with respect to the C(25) methyl group, the C(3)=O(1) carbonyl group synperiplanar relative to the C(5)-C(6) bond and anticlinal to the C(2)=O(3) carbonyl group. In both compounds, C(28), O(6), O(7) and C(31) in the C(17) ester group are coplanar; the torsion angles C(18)-C(17)-C(28)-O(6) are quite different. The position of the ester group in (2) is stabilized by an intermolecular hydrogen bond. In both compounds, ring *C* has a slightly distorted sofa conformation; all other rings have deformed chair conformations. Rings *D* and *E* are *cis*-fused.

Kommentar

Die Einwirkung von Chromtrioxyd auf Oleanolsäuremethylester (1) in Eisessig unter Zusatz von Schwefelsäure führt neben anderen Oleanolsäurederivaten zur Verbindung (2). Bei Behandlung mit Diazomethan erfolgt eine Umwandlung von (2) zu (3) (Zaprutko, 1994*b*).

Aufgrund spektroskopischer Untersuchungen (IR, MS, ¹H-, ¹³C-, ²D-NMR) hat Zaprutko (1994*b*) für diese Verbindungen die im Schema aufgeführten Strukturen vorgeschlagen. In dieser Mitteilung werden die Strukturen von (2) and (3) durch Röntgenstrukturanalysen bestätigt.

Die Laktonbrücke in (2) mit der mit dem C(3) Atom benachbarten Carbonylgruppe verbindet C(1) und C(3). Die an das zuletzt genannte C Atom gebundene Hydroxylgruppe nimmt die äquatoriale, die Carbonylgruppe des Laktonringes die axiale Lage ein.

Der Ring A von (2), in dem das O(2) Atom eine Methylengruppe ersetzt, liegt in einer verzerrten Sesselform vor.

Die C(1)=O(4) Carbonylgruppe in (3) nimmt eine antiperiplanare Stellung zur C(25) Methylgruppe

^{† 6.} Mitteilung: Zaprutko (1994a).